Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Braz. j. biol ; 84: e256916, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355874

ABSTRACT

Abstract Crotalaria (Fabaceae) occurs abundantly in tropical and subtropical regions and has about 600 known species. These plants are widely used in agriculture, mainly as cover plants and green manures, in addition to their use in the management of phytonematodes. A striking feature of these species is the production of pyrrolizidine alkaloids (PAs), secondary allelochemicals involved in plant defense against herbivores. In Crotalaria species, monocrotaline is the predominant PA, which has many biological activities reported, including cytotoxicity, tumorigenicity, hepatotoxicity and neurotoxicity, with a wide range of ecological interactions. Thus, studies have sought to elucidate the effects of this compound to promote an increase in flora and fauna (mainly insects and nematodes) associated with agroecosystems, favoring the natural biological control. This review summarizes information about the monocrotaline, showing such effects in these environments, both above and below ground, and their potential use in pest management programs.


Resumo Crotalaria (Linnaeus, 1753) (Fabaceae) ocorre abundantemente em regiões tropicais e subtropicais e tem cerca de 600 espécies conhecidas. Estas plantas são amplamente utilizadas na agricultura, principalmente como cobertura e adubos verdes, além da sua utilização no manejo de fitonematoides. Uma característica marcante destas espécies é a produção de alcalóides pirrolizidinicos (APs), aleloquímicos secundários envolvidos na defesa das plantas contra os herbívoros. Nas espécies de Crotalaria, a monocrotalina é a AP predominante, que tem muitas atividades biológicas relatadas, incluindo citotoxicidade, tumorigenicidade, hepatotoxicidade e neurotoxicidade, além de uma vasta gama de interações ecológicas. Assim, estudos têm procurado elucidar os efeitos desse composto para promover um incremento na flora e fauna (principalmente insetos e nematoides) associados aos agroecossistemas, favorecendo o controle biológico natural. Esta revisão compila informações sobre a monocrotalina, mostrando tais efeitos nesses ambientes, tanto acima como abaixo do solo e a sua potencial utilização em programas de manejo de pragas.


Subject(s)
Animals , Arthropods , Pyrrolizidine Alkaloids , Crotalaria , Fabaceae , Monocrotaline/toxicity
2.
Journal of Southern Medical University ; (12): 718-723, 2022.
Article in Chinese | WPRIM | ID: wpr-936368

ABSTRACT

OBJECTIVE@#To explore the therapeutic mechanism of tanshinone IIA in the treatment of pulmonary arterial hypertension (PAH) in rats.@*METHODS@#A total of 100 male SD rats were randomized into 5 groups (n=20), and except for those in the control group with saline injection, all the rats were injected with monocrotaline (MCT) on the back of the neck to establish models of pulmonary hypertension. Two weeks after the injection, the rat models received intraperitoneal injections of tanshinone IIA (10 mg/kg), phosphatidylinositol 3 kinase (PI3K) inhibitor (1 mg/kg), both tanshinone IIA and PI3K inhibitor, or saline (model group) on a daily basis. After 2 weeks of treatment, HE staining and α-SMA immunofluorescence staining were used to evaluate the morphology of the pulmonary vessels of the rats. The phosphorylation levels of PI3K, protein kinase B (PKB/Akt) and endothelial nitric oxide synthase (eNOS) in the lung tissue were determined with Western blotting; the levels of eNOS and NO were measured using enzyme-linked immunosorbent assay (ELISA).@*RESULTS@#The results of HE staining and α-SMA immunofluorescence staining showed that tanshinone IIA effectively inhibited MCT-induced pulmonary artery intimamedia thickening and muscularization of the pulmonary arterioles (P < 0.01). The results of Western blotting showed that treatment with tanshinone IIA significantly increased the phosphorylation levels of PI3K, Akt and eNOS proteins in the lung tissue of PAH rats; ELISA results showed that the levels of eNOS and NO were significantly decreased in the rat models after tanshinone IIA treatment (P < 0.01).@*CONCLUSION@#Treatment with tanshinone IIA can improve MCT-induced pulmonary hypertension in rats through the PI3K/Akt-eNOS signaling pathway.


Subject(s)
Animals , Male , Rats , Abietanes , Hypertension, Pulmonary/drug therapy , Monocrotaline/toxicity , Nitric Oxide Synthase Type III/therapeutic use , Phosphatidylinositol 3-Kinase/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery , Rats, Sprague-Dawley , Signal Transduction
3.
Arq. bras. cardiol ; 115(3): 480-490, out. 2020. graf
Article in English, Portuguese | LILACS, SES-SP | ID: biblio-1131304

ABSTRACT

Resumo Fundamento O modelo de hipertensão arterial pulmonar induzida por monocrotalina (MCT) é um dos mais reproduzidos atualmente, apresentando como limitação a ausência de lesões plexiformes, manifestações típicas da doença grave em humanos. Objetivo Avaliar a gravidade da arteriopatia pulmonar induzida por MCT por meio dos achados anatomopatológicos pulmonares e cardíacos, evolução clínica e sobrevida em 37 dias. Métodos Foram utilizados 50 ratos machos Wistar divididos em quatro grupos, sendo um controle (n = 10). Os três grupos restantes foram submetidos à inoculação de MCT (60 mg/kg i.p.) e ficaram sob o seu efeito por 15 (n = 10), 30 (n = 10) e 37 dias (n = 20). Ao final de cada período, os animais foram sacrificados, obtendo-se tecidos pulmonar e cardíaco para análise anatomopatológica e morfométrica. Empregou-se o teste Kruskal-Wallis, considerando nível de significância de 5%. Resultados Nos pulmões dos animais MCT foram constatadas lesões referentes à arteriopatia pulmonar, incluindo muscularização das arteríolas, hipertrofia da camada média e lesões neointimais concêntricas. Lesões complexas foram observadas nos grupos MCT, descritas como plexiforme e do "tipo" plexiforme (plexiform-like). A hipertrofia do ventrículo direito foi constatada pelo aumento da espessura e diâmetro dos cardiomiócitos e pelo aumento significativo da espessura da parede do ventrículo direito (p<0,0000). Conclusão O modelo foi capaz de gerar arteriopatia pulmonar moderada-grave associada à hipertrofia do ventrículo direito secundária, com sobrevida de 50% em 37 dias. De nosso conhecimento, este estudo foi o primeiro a constatar a presença de lesões vasculares complexas, semelhantes às observadas em pacientes com hipertensão arterial pulmonar grave, em modelo isolado de MCT. (Arq Bras Cardiol. 2020; 115(3):480-490)


Abstract Background The monocrotaline (MCT)-induced pulmonary arterial hypertension model is one of the most reproduced today, presenting as a limitation the absence of plexiform lesions, typical manifestations of the severe disease in humans. Objective To evaluate the severity of MCT-induced pulmonary arteriopathy by pathological findings of lung and heart tissue samples, clinical course and 37-day survival. Methods Fifty male Wistar rats were divided into one of the four groups - control (CG) (n = 10) and three intervention (MCT) groups. The MCT groups received intraperitoneal injection (60 mg/kg) of MCT and remained exposed to the substance for 15 days (G15, n = 10), 30 days (G30, n = 10) and 37 days (G37, n = 20). At the end of each period, the animals were sacrificed, and pulmonary and cardiac tissues were collected for anatomopathological and morphometric analysis. The Kruskal-Wallis test was used, considering a level of significance of 5%. Results In the lungs of MCT animals, lesions related to pulmonary arteriopathy were found, including muscularization of the arterioles, hypertrophy of the middle layer and concentric neointimal lesions. Complex lesions were observed in MCT groups, described as plexiform and plexiform-like lesions. Right ventricular hypertrophy was evidenced by increased thickness and diameter of the cardiomyocytes and a significant increase in the right ventricular wall thickness (p <0.0000). Conclusion The MCT model was able to generate moderate-severe pulmonary arteriopathy associated with secondary right ventricular hypertrophy. The 37-day survival rate was 50%. To our knowledge, this study was the first to note the presence of complex vascular lesions, similar to those observed in patients with severe pulmonary arterial hypertension, in an isolated MCT model. (Arq Bras Cardiol. 2020; 115(3):480-490)


Subject(s)
Humans , Animals , Male , Rats , Pulmonary Arterial Hypertension , Hypertension, Pulmonary/chemically induced , Monocrotaline/toxicity , Rats, Wistar , Hypertrophy, Right Ventricular/chemically induced
4.
The Korean Journal of Physiology and Pharmacology ; : 111-119, 2020.
Article in English | WPRIM | ID: wpr-787133

ABSTRACT

In vascular smooth muscle, K⁺ channels, such as voltage-gated K⁺ channels (Kv), inward-rectifier K⁺ channels (Kir), and big-conductance Ca²⁺-activated K⁺ channels (BK(Ca)), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (I(Kv) and I(Kir)) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) I(Kv) was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) I(Kv) inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) I(Kir) was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) I(BKCa) did not differ between branches. Moreover, in PAH rats, I(Kir) and I(Kv) decreased in SCSMCs, but not in RCSMCs or LCSMCs, and I(BKCa) did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in I(Kv) and I(Kir) occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller I(Kir) in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K⁺ concentration under increased activity of the myocardium.


Subject(s)
Animals , Rats , Coronary Vessels , Heart Diseases , Heart Failure , Hyperemia , Hypertension , Hypertrophy, Right Ventricular , Ischemia , Membrane Potentials , Monocrotaline , Muscle, Smooth , Muscle, Smooth, Vascular , Myocardium , Myocytes, Smooth Muscle , Patch-Clamp Techniques , Potassium Channels , Septum of Brain
5.
Korean Circulation Journal ; : 866-876, 2019.
Article in English | WPRIM | ID: wpr-759469

ABSTRACT

BACKGROUND AND OBJECTIVES: Elevated endothelin (ET)-1 level is strongly correlated with the pathogenesis of pulmonary arterial hypertension (PAH). Expression level of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 is increased in the PAH patients. Ambrisentan, a selective endothelin receptor A (ERA) antagonist, is widely used in PAH therapy. The current study was undertaken to evaluate the effects of ambrisentan treatment in the monocrotaline (MCT)-induced PAH rat model. METHODS: Rats were categorized into control group (C), monocrotaline group (M) and ambrisentan group (Am). The M and Am were subcutaneously injected 60 mg/kg MCT at day 0, and in Am, ambrisentan was orally administered the day after MCT injection for 4 weeks. The right ventricle (RV) pressure was measured and pathological changes of the lung tissues were observed by Victoria blue staining. Protein expressions of ET-1, ERA, endothelial nitric oxide synthase (eNOS) and NOX4 were confirmed by western blot analysis. RESULTS: Ambrisentan treatment resulted in a recovery of the body weight and RV/left ventricle+septum at week 4. The RV pressure was lowered at weeks 2 and 4 after ambrisentan administration. Medial wall thickening of pulmonary arterioles and the number of intra-acinar arteries were also attenuated by ambrisentan at week 4. Protein expression levels of ET-1 and eNOS were recovered at weeks 2 and 4, and ERA levels recovered at week 4. CONCLUSIONS: Ambrisentan administration resulted in the recovery of ET-1, ERA and eNOS protein expression levels in the PAH model. However, the expression level of NOX4 remained unaffected after ambrisentan treatment.


Subject(s)
Animals , Humans , Rats , Arteries , Arterioles , Blotting, Western , Body Weight , Endothelin Receptor Antagonists , Endothelins , Gene Expression , Heart Ventricles , Hypertension , Hypertension, Pulmonary , Lung , Models, Animal , Monocrotaline , NADP , NADPH Oxidases , Nitric Oxide Synthase Type III , Oxidoreductases , Receptors, Endothelin , Victoria
6.
The Ewha Medical Journal ; : 39-45, 2019.
Article in English | WPRIM | ID: wpr-761401

ABSTRACT

OBJECTIVES: Elevated pulmonary pressure and right ventricular (RV) dysfunction are the hallmarks of pulmonary vascular disease in animal models and human patients with pulmonary arterial hypertension (PAH). Monocrotaline models of PAH are widely used to study the pathophysiology of PAH. The purpose of this study was to evaluate the severity of PAH rat model by tissue Doppler imaging (TDI). METHODS: PAH was induced in Sprague-Dawley rats by monocrotaline (M) group. The peak systolic (s'), early diastolic (e'), and late diastolic myocardial velocities (a') were measured using TDI at basal segments. Tricuspid annular plane systolic excursion (TAPSE) was measured in the 4-chamber view. Velocity of a tricuspid regurgitation (TR) jet was measured to estimate the pulmonary artery pressure to assess the severity of PAH. RESULTS: Decrease in the RV shortening fraction and ejection fraction were observed in the M group compared with the control (C) group. RV e' velocity and s' velocity were significantly lower in the M group compared with the C group. The TAPSE was significantly lower in the M group compared with the C group (1.26±0.22 mm vs. 2.83±0.34 mm). The TR velocity was significantly higher in the M group compared with the C group (4.48±0.34 m/sec vs. 1.23±0.02 m/sec). CONCLUSION: TAPSE is an easily obtainable, widely recognized and clinically useful echocardiographic parameter of global RV function in the PAH rat model. We recommend that TDI would be a helpful diagnostic tool to evaluate the RV function in PAH rat model.


Subject(s)
Animals , Humans , Rats , Echocardiography , Hypertension , Hypertension, Pulmonary , Models, Animal , Monocrotaline , Pulmonary Artery , Rats, Sprague-Dawley , Tricuspid Valve Insufficiency , Vascular Diseases , Ventricular Dysfunction, Right , Ventricular Function, Right
7.
Chinese Journal of Applied Physiology ; (6): 169-172, 2019.
Article in Chinese | WPRIM | ID: wpr-776539

ABSTRACT

OBJECTIVE@#To study the protective effects of ginkgo biloba extract on the right ventricular hypertrophy.@*METHODS@#Seventy-two SD male rats were randomly divided into 3 groups: control group(CON), monocrotaline-induced right ventricular hypertrophy group (MCT) and ginkgo biloba extract treated group (EGB) (n=24 in each group). Group MCT and group EGB were intraperitoneally injected with 2%MCT at the dose of 60 mg /kg on the first day. From the second day, group MCT was injected with 2 ml 0.9% sodium chloride, and 60 mg/kg ginkgo leaf extract was administered to the stomach in group EGB. The control group was injected with 2 ml 0.9% sodium chloride on the first day. After 3 weeks, in each group,cardiac hemodynamic changes were measured, heart weight index was calculated, and myocardial pathological changes were observed by HE staining. The expression of TRPC6 was detected by real-time polymerase chain reaction (real-time -PCR) and Western blot.@*RESULTS@#Compared with the control group, the right ventricular systolic pressure (RVSP) was increased significantly in the MCT group(P<0.01), the maximum or decline rate of descent (RV ±dp/dt) of the right ventricle pressure was increased significantly(P<0.01), while the EGB group had the same trend as all the indexes in the group MCT, but the amplitude of all indicators in group EGB were decreased significantly than those of group MCT(P<0.01), and the right ventricular hypertrophy index (RVMI) in group EGB was significantly lower than that in group MCT(P<0.01).Group MCT showed typical myocardial hypertrophy performance by HE staining, and the right ventricular myocytes in group EGB were significantly improved than that in group MCT, and the mRNA and protein expression levels of TRPC6 in the right ventricle of group MCT and group EGB were increased(P<0.01), while the EGB group was significantly lower than that of the MCT group(P<0.01).@*CONCLUSION@#Ginkgo biloba extract may inhibit the signal pathway of CaN / NFAT in cardiac myocytes by reducing the expression of TRPC6 protein, and then play an early protective effect on myocardial hypertrophy.


Subject(s)
Animals , Male , Rats , Hypertrophy, Right Ventricular , Drug Therapy , Monocrotaline , Plant Extracts , Pharmacology , Random Allocation , Rats, Sprague-Dawley
8.
Chinese Journal of Applied Physiology ; (6): 209-214, 2019.
Article in Chinese | WPRIM | ID: wpr-776528

ABSTRACT

OBJECTIVE@#To investigate the effects of apple polyphenols on pulmonary vascular remodeling in rats with pulmonary arterial hypertension and its mechanism.@*METHODS@#Rats were randomly divided into 4 groups:control (Con) group, monocrotaline (MCT) group, apple polyphenol (APP) group,monocrotaline + apple polyphenol (MCT+APP) group. In Con group, rats received a subcutaneous injection of physical saline. In APP group, rats received intraperitoneal injection of 20 mg/kg APP, every other day. In MCT group, rats received a single subcutaneous injection of MCT(60 mg/kg). In MCT+APP group, rats received subcutaneous injection of 60 mg/kg MCT followed by an intraperitoneal injection of 20 mg/kg APP every other day. All the disposal lasted 3 weeks. Then the PAH-relevant indicators, such as mean pulmonary artery pressure(mPAP), pulmonary vascular resistance(PVR), right ventricular hypertrophy index (RVHI) ,wall thickness (WT%) and wall area (WA%) were tested. After that, the inflammatory pathway related indicators, such as interleukin1(IL-1),interleukin1(IL-6), tumor necrosis factor α(TNF-α), cyclooxygenase 2(COX-2) and myeloperoxidase(MPO) in pulmonary tissue and free intracellular Ca in pulmonary smooth muscle cell(PASMC), content of eNOS and NO in endothelial cells were determined.@*RESULTS@#Compared with the control group, the levels of mPAP, PVR, RVHI, WA%, WT%, and IL-1, IL-6, TNF-α, COX-2, MPO in tissue and the expression of Ca in PASMC of MCT group were increased significantly, while the contents of eNOS and NO in endothelial cells were decreased significantly (P<0.05). Compared with the MCT group, the apple polyphenol treatment could improve the above mentioned situation, and the COX-2 and Ca indicators of the apple polyphenol treatment group were decreased significantly (P<0.05).@*CONCLUSION@#MCT can increase COX-2 expression and intracellular Ca in pulmonary artery smooth muscle cells, decrease the contents of eNOS and NO in endothelial cells, while apple polyphenols can significantly inhibit these effects.


Subject(s)
Animals , Rats , Calcium , Metabolism , Cyclooxygenase 2 , Metabolism , Cytokines , Metabolism , Malus , Chemistry , Monocrotaline , Nitric Oxide , Metabolism , Nitric Oxide Synthase Type III , Metabolism , Polyphenols , Pharmacology , Pulmonary Artery , Pathology , Random Allocation , Vascular Remodeling
9.
The Ewha Medical Journal ; : 53-62, 2018.
Article in English | WPRIM | ID: wpr-716071

ABSTRACT

OBJECTIVES: Simvastatin has been reported to attenuate the development of pulmonary hypertension through increased apoptosis as well as reduced proliferation of smooth muscle cells in obstructive vascular lesions. Microarray experiment can accomplish many genetic tests in parallel. The purpose of this study is to evaluate altered expressions of gene in rat hearts with monocrotaline (MCT)-induced pulmonary arterial hypertension after simvastatin treatment. METHODS: Six-week-old male rats were grouped as follows: control group (C group, saline injection), M group (MCT 60 mg/kg), and S group (MCT 60 mg/kg plus 10 mg/kg/day simvastatin by gavage during 28 days). Body weight, right ventricular pressure and right ventricular/left ventricle+septum ratio in each group were measured. The rats were sacrificed after 28 days. Total RNA was extracted from the rat heart tissue and microarray analysis was performed. RESULTS: Administration of simvastatin significantly inhibited the progression of right ventricular hypertrophy at day 28 in the S group than in the M group. Compared with the C group, MCT was associated with a significant difference in expression of genes related to biosynthesis and with the regulation of heart contraction rate. Simvastatin treatment resulted in a significantly changed expression of genes about the regulation of progression through cell cycle and system development compared to the M group. The expressions of nitric oxide synthase and brain natriuretic peptide were significantly decreased after simvastatin treatment. CONCLUSION: Administration of simvastatin exerted inhibitory effects on right ventricular hypertrophy during the development of MCT-induced pulmonary arterial hypertension in rats. Simvastatin changes the expression of genes associated with various functions.


Subject(s)
Animals , Humans , Male , Rats , Apoptosis , Body Weight , Cell Cycle , Gene Expression , Heart , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypertension , Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Microarray Analysis , Monocrotaline , Myocytes, Smooth Muscle , Natriuretic Peptide, Brain , Nitric Oxide Synthase , RNA , Simvastatin , Ventricular Pressure
10.
Korean Circulation Journal ; : 839-853, 2018.
Article in English | WPRIM | ID: wpr-738746

ABSTRACT

BACKGROUND AND OBJECTIVES: Macitentan (MAC) reduces morbidity and mortality among advanced-stage pulmonary arterial hypertension (PAH) patients. However, data regarding the histopathologic and hemodynamic benefits of MAC treatment at an early stage of PAH is lacking. METHODS: One week after monocrotaline (MCT) injection, rats were randomly assigned to MAC (n=16), MAC combined with sildenafil (SIL) (MAC+SIL, n=16), or normal saline (MCT, n=16). Twelve sham rats (Sham) were included for comparison. Right ventricular (RV) systolic function was assessed via echocardiography as the RV fractional area change (RV-FAC). An invasive pressure-volume analysis using a Millar conductance catheter was performed 7 weeks after MCT injection. Rats were subsequently euthanized for histopathologic analysis. RESULTS: RV-right atrial pressure gradient on echocardiography was significantly increased 3 weeks after MCT injection, but was maintained in the Sham. RV-FAC was less deteriorated in the MAC, compared to that in the MCT (44±3% vs. 25±7%, p 0.05 vs. the MAC). On invasive hemodynamic analyses, RV end-systolic (196±78 µL) and end-diastolic volumes (310±86 µL), pulmonary artery systolic pressure (89±7.2 mmHg), and end-systolic pressure-volume relationship (−254±25.1) were significantly worse in the MCT vs. in the MAC (101±45 µL, 235±55 µL, 40±10.5 mmHg, and −145±42.1, respectively) and MAC+SIL (109±47 µL, 242±46 µL, 38±9.2 mmHg, and −151±39.2, respectively) (all p 0.05). On histopathology, both RV and lung fibrosis were significantly reduced in the MAC and MAC+SIL vs. in the MCT (all p < 0.05); the 2 treatment groups did not differ. CONCLUSIONS: MAC treatment at an earlier stage significantly attenuated experimental PAH progression hemodynamically and histopathologically.


Subject(s)
Animals , Humans , Rats , Atrial Pressure , Blood Pressure , Catheters , Echocardiography , Fibrosis , Hemodynamics , Hypertension , Hypertension, Pulmonary , Lung , Models, Animal , Monocrotaline , Mortality , Pathology , Pulmonary Artery , Sildenafil Citrate
11.
Korean Circulation Journal ; : 1135-1144, 2018.
Article in English | WPRIM | ID: wpr-738669

ABSTRACT

BACKGROUND AND OBJECTIVES: Mitochondria play a key role in the pathophysiology of heart failure and mitochondrial permeability transition pore (MPTP) play a critical role in cell death and a critical target for cardioprotection. The aim of this study was to evaluate the protective effects of cyclosporine A (CsA), one of MPTP blockers, and morphological changes of mitochondria and MPTP related proteins in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). METHODS: Eight weeks old Sprague-Dawley rats were randomized to control, MCT (60 mg/kg) and MCT plus CsA (10 mg/kg/day) treatment groups. Four weeks later, right ventricular hypertrophy (RVH) and morphological changes of right ventricle (RV) were done. Western blot and reverse transcription polymerase chain reaction (RT-PCR) for MPTP related protein were performed. RESULTS: In electron microscopy, CsA treatment prevented MCT-induced mitochondrial disruption of RV. RVH was significantly increased in MCT group compared to that of the controls but RVH was more increased with CsA treatment. Thickened medial wall thickness of pulmonary arteriole in PAH was not changed after CsA treatment. In western blot, caspase-3 was significantly increased in MCT group, and was attenuated in CsA treatment. There were no significant differences in voltage-dependent anion channel, adenine nucleotide translocator 1 and cyclophilin D expression in western blot and RT-PCR between the 3 groups. CONCLUSIONS: CsA reduces MCT induced RV mitochondrial damage. Although, MPTP blocking does not reverse pulmonary pathology, it may reduce RV dysfunction in PAH. The results suggest that it could serve as an adjunctive therapy to PAH treatment.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Adenine Nucleotide Translocator 1 , Arterioles , Blotting, Western , Caspase 3 , Cell Death , Cyclophilins , Cyclosporine , Heart Failure , Heart Ventricles , Hypertension , Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Microscopy, Electron , Mitochondria , Monocrotaline , Pathology , Permeability , Polymerase Chain Reaction , Pulmonary Circulation , Rats, Sprague-Dawley , Reverse Transcription
12.
International Journal of Stem Cells ; : 168-176, 2018.
Article in English | WPRIM | ID: wpr-739930

ABSTRACT

BACKGROUND AND OBJECTIVES: Previous studies have shown that integrins alpha5beta1 (ITGA5B1) gene-modified rat bone marrow mesenchymal stem cells (rBMSCs) could prevent cell anoikis and increase the nitric oxide (NO) production. Here we examined the capability of rBMSCs/ITGA5B1 on the phenotype modulation of Human Pulmonary Artery Smooth Muscle Cell (HPASMC) in vitro. METHODS AND RESULTS: The synthetic (dedifferentiated) phenotype of HPASMC was induced by monocrotaline (MCT, 1μM) for 24 h and then co-cultured with rBMSCs/ITGA5B1 in a transwell culture system. The activation of NO/cGMP (nitric oxide/Guanosine-3′, 5′-cyclic monophosphate) signaling was investigated in HPASMC. The changes of pro-inflammatory factors, oxidative stress, vasodilator, vasoconstrictor, contractile and synthetic genes, and the morphological changes of HPASMC were investigated. The results of this study showed that the NO/cGMP signal, endothelial nitric oxide synthase (eNOS) expression, the expression of the vasoprotective genes heme oxygenase-1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2) were increased, but the expression of transforming growth factor-β1 (TGF-β1), CCAAT/enhancer-binding proteins delta (Cebpd), Krüppel-like factor 4 (KLF4), and activating transcription factor 4 (ATF4) were reduced in MCT treated HPASMC co-cultured with rBMSCs/ITGA5B1. The synthetic smooth muscle cells (SMCs) phenotype markers thrombospondin-1, epiregulin and the vasoconstrictor endothelin (ET)-1, thromboxane A2 receptor (TbxA2R) were down-regulated, whereas the contractile SMCs phenotype marker transgelin expression was up-regulated by rBMSCs/ITGA5B1. Furthermore, rBMSCs/ITGA5B1 promoted the morphological restoration from synthetic (dedifferentiation) to contractile (differentiation) phenotype in MCT treated HPASMC. CONCLUSIONS: rBMSCs/ITGA5B1 could inhibit inflammation and oxidative stress related genes to promote the HPASMC cell differentiation by activation NO/cGMP signal.


Subject(s)
Animals , Humans , Rats , Activating Transcription Factor 4 , Anoikis , Bone Marrow , Cell Differentiation , Endothelins , Epiregulin , Genes, Synthetic , Heme Oxygenase-1 , In Vitro Techniques , Inflammation , Integrins , Mesenchymal Stem Cells , Monocrotaline , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nitric Oxide Synthase Type III , Nitric Oxide , Oxidative Stress , Phenotype , Prostaglandin-Endoperoxide Synthases , Pulmonary Artery , Receptors, Thromboxane A2, Prostaglandin H2
13.
The Korean Journal of Physiology and Pharmacology ; : 447-456, 2018.
Article in English | WPRIM | ID: wpr-727574

ABSTRACT

Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) (576 µg/kg/day) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor (AT₂R) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as TNF-α, MCP-1, IL-1β, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl-2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via AT₂R.


Subject(s)
Animals , Rats , Angiotensins , Apoptosis , Arterioles , Blood Pressure , Caspase 3 , Cytokines , Hypertension , Hypertension, Pulmonary , Hypertrophy , Interleukin-6 , Lung , Monocrotaline , Plasma , Pulmonary Fibrosis , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2 , Vascular Remodeling
14.
Korean Journal of Pediatrics ; : 271-278, 2018.
Article in English | WPRIM | ID: wpr-716768

ABSTRACT

PURPOSE: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. METHODS: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. RESULTS: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. CONCLUSION: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.


Subject(s)
Animals , Rats , Arterioles , Blotting, Western , Catheterization , Catheters , Endothelins , Glutathione , Hemodynamics , Hypertension , Jugular Veins , Lung , Models, Animal , Monocrotaline , Myocytes, Smooth Muscle , NADPH Oxidases , Polymerase Chain Reaction , Potassium , Potassium Channels , Potassium Channels, Voltage-Gated , Pulmonary Artery , Reactive Oxygen Species , RNA, Messenger , Ventricular Pressure
15.
Yonsei Medical Journal ; : 570-580, 2017.
Article in English | WPRIM | ID: wpr-188812

ABSTRACT

PURPOSE: Pulmonary arterial hypertension (PAH) is a fatal disease which is characterized by an increase in pulmonary arterial pressure leading to increases in right ventricular afterload. Human umbilical cord blood derived-mesenchymal stem cells (hUCB-MSCs) administered via the jugular vein have been previously shown to improve PAH by reversal treatment. However, the effect of low dosage and transfusion timing of hUCB-MSCs on PAH has not yet been clearly established. Obviously, low dosage treatment can lead to a reduction in costs. This is the first study on early transfusion effect. MATERIALS AND METHODS: This study was divided into two parts. The first part is an investigation of dose-dependent effect. hUCB-MSCs were administered into 3 groups of rats (UA: 3×10⁶ cells, UB: 1.5×10⁶ cells, UC: 3×10⁵ cells) via the external jugular vein at week 1 after monocrotaline (MCT) injection. The second part is a search for optimal treatment timing in 3×10⁵ cells dose of hUCB-MSCs administered at day 1 for UD group (low dose of hUCB-MSCs at day 1), at day 1 and week 1 for the UE group (dual transfusion of low dose of hUCB-MSCs at day 1 and week 1) and at 1 week for the UF group (reversal treatment of low dose hUCB-MSC at week 1) after MCT injection. RESULTS: The administration of 3×10⁵ hUCB-MSCs was as effective as the 3×10⁶ dose in decreasing mean right ventricle (RV) pressure and pulmonary pathological changes. Early treatment with hUCB-MSCs improved mean RV pressure, pulmonary pathological changes and heart collagen 3 protein expression levels in PAH. CONCLUSION: Low-dose early treatment of hUCB-MSCs is as effective as a high dose treatment of hUCB-MSCs in improving PAH although dual or reversal treatment is still more effective.


Subject(s)
Animals , Humans , Rats , Arterial Pressure , Collagen , Fetal Blood , Heart , Heart Ventricles , Hypertension , Hypertension, Pulmonary , Jugular Veins , Mesenchymal Stem Cells , Monocrotaline , Stem Cells
16.
Arq. bras. cardiol ; 107(1): 33-39, July 2016. tab, graf
Article in English | LILACS | ID: lil-792492

ABSTRACT

Abstract Background: Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective: To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods: Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results: Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion: The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction.


Resumo Fundamento: Insuficiência cardíaca direita apresenta grande morbimortalidade e pode ser causada por hipertensão arterial pulmonar. Um método diferenciado e inovador utilizado em avaliações histológicas é a dimensão fractal, que permite a caracterização de estruturas irregulares e complexas e pode quantificar alterações estruturais dos tecidos. Objetivo: Avaliar a utilização do método da dimensão fractal nos cardiomiócitos de ratos com hipertensão arterial pulmonar induzida por monocrotalina, associada com análise histológica e funcional. Métodos: Ratos Wistar machos foram divididos em 2 grupos: controle (C; n = 8) e hipertensão arterial pulmonar induzida por monocrotalina (M; n = 8). Após 5 semanas da indução da hipertensão arterial pulmonar pela monocrotalina, foi realizado ecocardiograma. Os animais foram eutanasiados, o coração dissecado e os ventrículos pesados para avaliação dos parâmetros anatômicos. Lâminas histológicas foram confeccionadas, coradas com hematoxilina/eosina para análise da dimensão fractal, realizada pelo método box-counting . Inicialmente foi testada a normalidade dos dados (teste Shapiro Wilk) e a comparação entre os grupos foi por meio do teste t de Student não pareado ou teste de Mann Whitney (p < 0,05). Resultados: Maiores valores da dimensão fractal foram observados no grupo M em comparação ao C (1,43 ± 0,06 vs. 1,37 ± 0,04; p < 0,05). O ecocardiograma apontou menores valores no grupo M para velocidade máxima pulmonar, tempo de aceleração pulmonar e tempo de ejeção, sugerindo piora funcional nesses animais, que também apresentaram hipertrofia cardíaca. Conclusão: As alterações observadas comprovam a disfunção cardíaca induzida pela hipertensão arterial pulmonar e apontam que a dimensão fractal é um método eficaz para avaliar alterações morfológicas cardíacas induzidas pela disfunção ventricular.


Subject(s)
Animals , Male , Fractals , Heart Failure/etiology , Heart Failure/pathology , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/pathology , Reference Values , Stroke Volume/physiology , Echocardiography , Reproducibility of Results , Monocrotaline , Rats, Wistar , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/pathology , Myocytes, Cardiac/pathology , Disease Models, Animal , Heart Failure/physiopathology , Hypertension, Pulmonary/physiopathology
17.
The Korean Journal of Physiology and Pharmacology ; : 641-647, 2016.
Article in English | WPRIM | ID: wpr-728266

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high K⁺ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-N(G)-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling.


Subject(s)
Animals , Rats , Angiotensins , Hypoxia , Arterial Pressure , Endothelial Cells , Eosine Yellowish-(YS) , Heart Ventricles , Hematoxylin , Hypertension , Hypertrophy , Lung , Models, Animal , Monocrotaline , Nitric Oxide Synthase , Pulmonary Artery , Vascular Remodeling , Vascular Resistance , Vasoconstriction , Vasoconstrictor Agents
18.
Korean Journal of Pediatrics ; : 262-270, 2016.
Article in English | WPRIM | ID: wpr-107692

ABSTRACT

PURPOSE: Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. METHODS: The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. RESULTS: The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. CONCLUSION: Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function.


Subject(s)
Animals , Rats , Arteries , Arterioles , B-Lymphocytes , Blotting, Western , Caspase 3 , Collagen , Endothelins , Gene Expression , Heart , Hypertension , Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Interleukin-6 , Interleukins , Lung , Models, Animal , Monocrotaline , Natriuretic Peptide, Brain , Necrosis , Nitric Oxide Synthase Type III , Sildenafil Citrate , Troponin I , Vascular Resistance , Ventricular Function, Right , Ventricular Pressure , Ventricular Remodeling
19.
Korean Circulation Journal ; : 79-92, 2016.
Article in English | WPRIM | ID: wpr-22787

ABSTRACT

BACKGROUND AND OBJECTIVES: Failure of vascular smooth muscle apoptosis and inflammatory response in pulmonary arterial hypertension (PAH) is a current research focus. The goals of this study were to determine changes in select gene expressions in monocrotaline (MCT)-induced PAH rat models after human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) transfusion. MATERIALS AND METHODS: The rats were separated into 3 groups i.e., control group (C group), M group (MCT 60 mg/kg), and U group (hUCB-MSCs transfusion) a week after MCT injection. RESULTS: TUNEL assay showed that the U group had significantly lowered positive apoptotic cells in the lung tissues, as compared with the M group. mRNA of caspase-3, B cell leukemia/lymphoma (Bcl)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-alpha and vascular endothelial growth factor (VEGF) in the lung tissues were greatly reduced at week 4 in the U group. Immunohistochemical staining of the lung tissues also demonstrated a similar pattern, with the exception of IL-6. The protein expression of caspase-3, Bcl-2 VEGF, IL-6, TNF-alpha and brain natriuretic peptide in the heart tissues were significantly lower in the U group, as compared with the M group at week 2. Furthermore, the protein expression of VEGF, IL-6 and BNP in the heart tissues were significantly lower in the U group at week 4. Collagen content in the heart tissues was significantly lower in the U group, as compared with M group at weeks 2 and 4, respectively. CONCLUSION: hUCB-MSCs could prevent inflammation, apoptosis and remodeling in MCT-induced PAH rat models.


Subject(s)
Animals , Humans , Rats , Apoptosis , Caspase 3 , Collagen , Fetal Blood , Gene Expression , Heart , Hypertension , Hypertension, Pulmonary , In Situ Nick-End Labeling , Inflammation , Interleukin-6 , Interleukins , Lung , Mesenchymal Stem Cells , Models, Animal , Monocrotaline , Muscle, Smooth, Vascular , Natriuretic Peptide, Brain , RNA, Messenger , Stem Cells , Tumor Necrosis Factor-alpha , Umbilical Cord , Vascular Endothelial Growth Factor A
20.
China Journal of Chinese Materia Medica ; (24): 1355-1361, 2015.
Article in Chinese | WPRIM | ID: wpr-246096

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of sesamin (Ses) on pulmonary vascular remodeling in rats with monocrotaline ( MCT)-induced pulmonary hypertension (PH).</p><p><b>METHOD</b>Totally 48 male Sprague-Dawley (SD) rats were fed adaptively for one week and then divided into the normal control group, the MCT group, the MCT +Ses (50 mg x kg(-1)) group and the MCT + Ses (100 mg x kg(-1)) group, with 12 rats in each group. The PH rat model was induced through the subcutaneous injection with MCT(60 mg x kg(-1)). After the administration for four weeks, efforts were made to measure the right ventricular systolic pressure( RVSP) and mean pulmonary artery pressure (mPAP) through right jugular vein catheterization, and isolate right ventricle( RV) and left ventricle( LV) +septum (S) and measure their length to calculate RV/ ( LV + S) and ratio of RV to tibial length. Pathologic changes in arterioles were observed by HE staining. Masson's trichrome stain was used to demonstrate changes in collagen deposition of arterioles. The alpha-smooth muscle actin (alpha-SMA) expression in pulmonary arteries was measured by immunohistochemisty. The total antioxidative capacity (T-AOC) and malondialdehyde (MDA) content in pulmonary arteries were determined by the colorimetric method. The protein expressions of collagen I, NOX2 and NOX4 were analyzed by Real-time PCR and Western blot.</p><p><b>RESULT</b>After the administration for 4 weeks, Ses could attenuate RVSP and mPAP induced by MCT, RV/ (LV + S) and ratio of RV to Tibial length, alpha-SMA and collagen I expressions and remodeling of pulmonary vessels and right ventricle. Meanwhile, Ses could obviously inhibit the expressions of NOX2, NOX4 and MDA content and increase T-AOC.</p><p><b>CONCLUSION</b>Sesamin could ameliorate pulmonary vascular remodeling induced by monocrotaline in PH rats. Its mechanism may be related to expressions of NOX2 and NOX4 expression and reduction in oxidative stress injury.</p>


Subject(s)
Animals , Humans , Male , Rats , Dioxoles , Disease Models, Animal , Drugs, Chinese Herbal , Hypertension, Pulmonary , Drug Therapy , Genetics , Lignans , Lung , Metabolism , Membrane Glycoproteins , Genetics , Metabolism , Monocrotaline , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases , Genetics , Metabolism , Pulmonary Artery , Metabolism , Rats, Sprague-Dawley , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL